Levels of Gene Expression of Semaphorins 3A And 4D In Alveolar Bone Repair of Normal And Hyperglycemic Rats
DOI:
https://doi.org/10.37497/colloquium.v1i2.12Keywords:
Hyperglycemia, Semaphorins, Gene Expression, RatsAbstract
Diabetes mellitus is a metabolic disorder characterized by chronic hyperglycemia with disturbances in the metabolism that can negatively affect healing and tissue repair. Several signaling pathways play an essential role in maintaining skeletal integrity through positive or negative bone cell regulation. Semaphorins are a family of proteins bound to the cell surface or secreted that can regulate the interaction, morphology, and function of different types of cells. Semaphorin 3A (Sem3A) has been involved in bone remodeling activities, and reports on Semaphorin 4D (Sem4D) activity during bone resorption performed by osteoclasts are also found. The present study aimed to evaluate the level of expression of Semaphorins 3A and 4D in the newly formed alveolar bone tissue of normal and hyperglycemic rats. The animals were divided into the following groups: Non-hyperglycemic (NH, n = 10) and hyperglycemic (H, n= 10). Hyperglycemia was induced in animals by water added 10% fructose and streptozotocin on the 14th day after. On the 76th day after hyperglycemia induction, all animals were anesthetized to remove the lower molars. On the 84th day, euthanasia took place, followed by curettage of the newly formed bone tissue was stored in RNA later® for extraction of total RNA, treatment with DNAse and preparation of the cDNA, and analysis of the gene expression of Sem3A and Sem4D. The results were subjected to a normality test, and a non-parametric test was selected with a significance level set at 5% (p <0.05). The present study results suggest that in the experimental model used, the levels of gene expression of Sem 3A and 4D are not associated with the negative impact of hyperglycemia on bone repair.
Downloads
References
American Psychiatric Association. (1988). DSM-III-R, Diagnostic and statistical manual of mental disorder (3rd ed. rev.). Washington, DC: Author.
Bellido, T., Ali, A. A., Plotkin, L. I., Fu, Q., Gubrij, I., Roberson, P. K., ... & Jilka, R. L. (2003). Proteasomal degradation of Runx2 shortens parathyroid hormone-induced anti- apoptotic signaling in osteoblasts A putative explanation for why intermittent administration is needed for bone anabolism. Journal of Biological Chemistry, 278(50), 50259-50272.
Bougeret, C., Mansur, I. G., Dastot, H., Schmid, M., Mahouy, G., Bensussan, A., & Boumsell, L. (1992). Increased surface expression of a newly identified 150-kDa dimer early after human T lymphocyte activation. The Journal of Immunology, 148(2), 318- 323.
Boyle, W. J., Simonet, W. S., & Lacey, D. L. (2003). Osteoclast differentiation and activation. Nature, 423(6937), 337-342.
Chabbi-Achengli, Y., Coudert, A. E., Callebert, J., Geoffroy, V., Côté, F., Collet, C., & de Vernejoul, M. C. (2012). Decreased osteoclastogenesis in serotonin-deficient mice. Proceedings of the National Academy of Sciences, 109(7), 2567-2572.
Chen, X., Wang, Z., Duan, N., Zhu, G., Schwarz, E. M., & Xie, C. (2018). Osteoblast– osteoclast interactions. Connective Tissue Research, 59(2), 99–107. https://doi.org/10.1080/03008207.2017.1290085
Claudino, M., Gennaro, G., Cestari, T. M., Spadella, C. T., Garlet, G. P., & Assis, G. F. (2012). Spontaneous periodontitis development in diabetic rats involves an unrestricted expression of inflammatory cytokines and tissue destructive factors in the absence of major changes in commensal oral microbiota. Experimental diabetes research, 2012.
Costa, I. S., de Lima Rodrigues, I., da Silva, K. G., de Oliveira, T. S., Ribeiro, R. A., Rodrigues, R. A., ... & de Souza, J. N. L. (2015). A INFLUÊNCIA DA DIABETES MELLITUS NA IMPLANTODONTIA: UMA REVISÃO DE LITERATURA. Revista
Saúde & Ciência Online, 4(3), 84-97.
Deb Roy, A., Yin, T., Choudhary, S., Rodionov, V., Pilbeam, C. C., & Wu, Y. I. (2017). Optogenetic activation of Plexin-B1 reveals contact repulsion between osteoclasts and osteoblasts. Nature Communications, 8(May). https://doi.org/10.1038/ncomms15831
Delaire, S., Elhabazi, A., Bensussan, A., & Boumsell, L. (1998). CD100 is a leukocyte semaphorin. Cellular and Molecular Life Sciences, 54(11), 1265–1276. https://doi.org/10.1007/s000180050252
Engin, F., Yao, Z., Yang, T., Zhou, G., Bertin, T., Jiang, M. M., Chen, Y., Wang, L., Zheng, H., Sutton, R. E., Boyce, B. F., & Lee, B. (2008). Dimorphic effects of Notch signaling in bone homeostasis. Nature Medicine, 14(3), 299–305. https://doi.org/10.1038/nm1712
Erlandsson, M. C., Svensson, M. D., Jonsson, I. M., Bian, L., Ambartsumian, N., Andersson, S., Peng, Z. Q., Vääräniemi, J., Ohlsson, C., Andersson, K. M. E., & Bokarewa, M. I. (2013). Expression of metastasin S100A4 is essential for bone resorption and regulates osteoclast function. Biochimica et Biophysica Acta - Molecular Cell Research, 1833(12), 2653–2663. https://doi.org/10.1016/j.bbamcr.2013.06.020
Fukuda, T., Takeda, S., Xu, R., Ochi, H., Sunamura, S., Sato, T., Shibata, S., Yoshida, Y., Gu,
Z., Kimura, A., Ma, C., Xu, C., Bando, W., Fujita, K., Shinomiya, K., Hirai, T., Asou, Y., Enomoto, M., Okano, H., … Itoh, H. (2013). Sema3A regulates bone-mass accrual through sensory innervations. Nature, 497(7450), 490–493. https://doi.org/10.1038/nature12115
Gjerdrum, C., Tiron, C., Høiby, T., Stefansson, I., Haugen, H., Sandal, T., Collett, K., Li, S., McCormack, E., Gjertsen, B. T., Micklem, D. R., Akslen, L. A., Glackin, C., & Lorens,
J. B. (2010). Axl is an essential epithelial-to-mesenchymal transition-induced regulator of breast cancer metastasis and patient survival. Proceedings of the National Academy of Sciences of the United States of America, 107(3), 1124–1129. https://doi.org/10.1073/pnas.0909333107
Goëb, V., & Trouvin Anne-Priscille. (2010). Receptor activator of nuclear factor-κB ligand and osteoprotegerin: maintaining the balance to prevent bone loss. Clinical Interventions in Aging, 345. https://doi.org/10.2147/cia.s10153
Hall, K. T., Boumsell, L., Schultze, J. L., Boussiotis, V. A., Dorfman, D. M., Cardoso, A. A., Bensussan, A., Nadler, L. M., & Freeman, G. J. (1996). Human CD100, a novel leukocyte semaphorin that promotes B-cell aggregation and differentiation. Proceedings of the National Academy of Sciences of the United States of America, 93(21), 11780– 11785. https://doi.org/10.1073/pnas.93.21.11780
Hayashi, M., Nakashima, T., Taniguchi, M., Kodama, T., Kumanogoh, A., & Takayanagi, H. (2012). Osteoprotection by semaphorin 3A. Nature, 485(7396), 69–74. https://doi.org/10.1038/nature11000
Irie, K., Ekuni, D., Yamamoto, T., Morita, M., Yaegaki, K., Ii, H., & Imai, T. (2009). A single application of hydrogen sulphide induces a transient osteoclast differentiation with RANKL expression in the rat model. Archives of Oral Biology, 54(8), 723–729. https://doi.org/10.1016/j.archoralbio.2009.05.006
Islam, M. S., & Loots, D. T. (2009). Experimental rodent models of type 2 diabetes: a review. Methods and findings in experimental and clinical pharmacology, 31(4), 249.
Islam, M. S., & Wilson, R. D. (2012). Experimentally induced rodent models of type 2 diabetes. In Animal models in diabetes research (pp. 161-174). Humana Press, Totowa, NJ.
Keller, H., & Kneissel, M. (2005). SOST is a target gene for PTH in bone. Bone, 37(2), 148– 158. https://doi.org/10.1016/j.bone.2005.03.018
Kenan, S., Onur, Ö. D., Solakoğlu, S., Kotil, T., Ramazanoğlu, M., Çelik, H. H., Ocak, M., Uzuner, B., & Fıratlı, E. (2019). Investigation of the effects of semaphorin 3A on new bone formation in a rat calvarial defect model. Journal of Cranio-Maxillofacial Surgery, 47(3), 473–483. https://doi.org/10.1016/j.jcms.2018.12.010
Kruger, R. P., Aurandt, J., & Guan, K. L. (2005). Semaphorins command cells to move. Nature Reviews Molecular Cell Biology, 6(10), 789–800. https://doi.org/10.1038/nrm1740
Kumanogoh, A., Marukawa, S., Suzuki, K., Takegahara, N., Watanabe, C., Ch’ng, E. S., Ishida, I., Fujimura, H., Sakoda, S., Yoshida, K., & Kikutani, H. (2002). Class iv semaphorin sema4a enhances t-cell activation and interacts with tim-2. Nature, 419(6907), 629–633. https://doi.org/10.1038/nature01037
Leah, E. (2011). Bone: Finding that osteoclasts repel osteoblast activity through Sema4D reveals novel target for bone-boosting therapies. Nature Reviews Rheumatology, 7(12), 681. https://doi.org/10.1038/nrrheum.2011.175
Liu, L., Zhang, C., Hu, Y., & Peng, B. (2012). Protective effect of metformin on periapical lesions in rats by decreasing the ratio of receptor activator of nuclear factor kappa B ligand/osteoprotegerin. Journal of endodontics, 38(7), 943-947.
Magri, A. M. P., Fernandes, K. R., Assis, L., Mendes, N. A., da Silva Santos, A. L. Y., de Oliveira Dantas, E., & Rennó, A. C. (2015). Photobiomodulation and bone healing in diabetic rats: evaluation of bone response using a tibial defect experimental model. Lasers in Medical Science, 30(7), 1949–1957. https://doi.org/10.1007/s10103-015-1789- 3
Marie, P. J. (2012). Signaling pathways affecting skeletal health. Current Osteoporosis Reports, 10(3), 190–198. https://doi.org/10.1007/s11914-012-0109-0
Masiello, P., Broca, C., Gross, R., Roye, M., Manteghetti, M., Hillaire-Buys, D., Novelli, M., & Ribes, G. (1998). Experimental NIDDM Development of a New Model in Adult Rats Administered Streptozotocin and Nicotinamide From the Istituto di Patologia Generate (P. Diabetes, 47(February), 224–229.
Meier, C., Schwartz, A. V., Egger, A., & Lecka-Czernik, B. (2016). Effects of diabetes drugs on the skeleton. Bone, 82, 93–100. https://doi.org/10.1016/j.bone.2015.04.026
Muruganandan, S., Srinivasan, K., Gupta, S., Gupta, P. K., & Lal, J. (2005). Effect of mangiferin on hyperglycemia and atherogenicity in streptozotocin diabetic rats. Journal of Ethnopharmacology, 97(3), 497–501. https://doi.org/10.1016/j.jep.2004.12.010
Negishi-Koga, T., Shinohara, M., Komatsu, N., Bito, H., Kodama, T., Friedel, R. H., & Takayanagi, H. (2011). Suppression of bone formation by osteoclastic expression of semaphorin 4D. Nature medicine, 17(11), 1473-1480.
Padula, E. de O., Andrade, M. L., Giordano, V., & Ramalho, M. V. (2003). Aspectos
morfológicos do processo de consolidação de fratura em ratos diabéticos. Rev. Bras. Ortop, 38(3), 127–136.
Reuter, C. P., Burgos, L. T., Camargo, M. D., Possuelo, L. G., Reckziege, M. B., Reuter, É. M., Meinhardt, F. P., & Burgos, M. S. (2013). Prevalência de obesidade e risco cardiovascular em crianças e adolescentes do município de Santa Cruz do Sul, Rio Grande do Sul. Sao Paulo Medical Journal, 131(5), 323–330. https://doi.org/10.1590/1516-3180.2013.1315518
Roth, L., Koncina, E., Satkauskas, S., Crémel, G., Aunis, D., & Bagnard, D. (2009). The many faces of semaphorins: From development to pathology. Cellular and Molecular Life Sciences, 66(4), 649–666. https://doi.org/10.1007/s00018-008-8518-z
Sousa, A. M., Franco, P. A. B., Ashmawi, H. A., & Posso, I. de P. (2008). Efeito analgésico local do tramadol em modelo de dor provocada por formalina em ratos. Revista Brasileira de Anestesiologia, 58(4), 371–379. https://doi.org/10.1590/s0034-
Taniguchi, M., Yuasa, S., Fujisawa, H., Naruse, I., Saga, S., Mishina, M., & Yagi, T. (1997). Disruption of semaphorin III/D gene causes severe abnormality in peripheral nerve projection. Neuron, 19(3), 519–530. https://doi.org/10.1016/S0896-6273(00)80368-2
Tashjian Jr, A. H., & Goltzman, D. (2008). On the interpretation of rat carcinogenicity studies for human PTH (1‐34) and human PTH (1‐84). Journal of Bone and Mineral Research, 23(6), 803-811.
Terpos, E., Ntanasis-Stathopoulos, I., Christoulas, D., Bagratuni, T., Bakogeorgos, M., Gavriatopoulou, M., Eleutherakis-Papaiakovou, E., Kanellias, N., Kastritis, E., & Dimopoulos, M. A. (2018). Semaphorin 4D correlates with increased bone resorption, hypercalcemia, and disease stage in newly diagnosed patients with multiple myeloma. Blood Cancer Journal, 8(5). https://doi.org/10.1038/s41408-018-0075-6
Tran, T. S., Kolodkin, A. L., & Bharadwaj, R. (2007). Semaphorin regulation of cellular morphology. Annual Review of Cell and Developmental Biology, 23, 263–292. https://doi.org/10.1146/annurev.cellbio.22.010605.093554
Weyer, C., Tataranni, P. A., Bogardus, C., & Pratley, R. E. (2001). Insulin resistance and insulin secretory dysfunction are independent predictors of worsening of glucose tolerance during each stage of type 2 diabetes development. Diabetes care, 24(1), 89-94.
Willner, N., Goldberg, Y., Schiff, E., & Vadasz, Z. (2018). Semaphorin 4D levels in heart failure patients: A potential novel biomarker of acute heart failure? ESC Heart Failure, 5(4), 603–609. https://doi.org/10.1002/ehf2.12275
World Health Organization. (1999). Definition, diagnosis and classification of diabetes mellitus and its complications: report of a WHO consultation. Part 1, Diagnosis and classification of diabetes mellitus (No. WHO/NCD/NCS/99.2). World Health Organization.
Wu, L. yan, Li, M., Qu, M. L., Li, X., Pi, L. H., Chen, Z., Zhou, S. L., Yi, X. Q., Shi, X. J.,
Wu, J., & Wang, S. (2018). High glucose up-regulates Semaphorin 3A expression via the mTOR signaling pathway in keratinocytes: A potential mechanism and therapeutic target for diabetic small fiber neuropathy. Molecular and Cellular Endocrinology, 472(2018), 107–116. https://doi.org/10.1016/j.mce.2017.11.025
Wu, W. N., Mckown, L. A., Codd, E. E., & Raffa, R. B. (2006). Metabolism of two analgesic agents, tramadol-n-oxide and tramadol, in specific pathogen-free and axenic mice. Xenobiotica, 36(6), 551–565. https://doi.org/10.1080/00498250600653372
Yan, S. F., Ramasamy, R., & Schmidt, A. M. (2008). Mechanisms of Disease: Advanced glycation end-products and their receptor in inflammation and diabetes complications. Nature Clinical Practice Endocrinology and Metabolism, 4(5), 285–293. https://doi.org/10.1038/ncpendmet0786
Yan, S. F., Ramasamy, R., & Schmidt, A. M. (2009). Receptor for AGE (RAGE) and its ligands-cast into leading roles in diabetes and the inflammatory response. Journal of Molecular Medicine, 87(3), 235–247. https://doi.org/10.1007/s00109-009-0439-2
Zhao, C., Irie, N., Takada, Y., Shimoda, K., Miyamoto, T., Nishiwaki, T., Suda, T., & Matsuo, K. (2006). Bidirectional ephrinB2-EphB4 signaling controls bone homeostasis. Cell Metabolism, 4(2), 111–121. https://doi.org/10.1016/j.cmet.2006.05.012
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution 4.0 International License.
O(s) autor declara(m) que o trabalho é original e inédito, não tendo sido submetido à publicação em qualquer meio de divulgação, especialmente em outro periódico, nacional ou internacional, quer seja em parte ou na íntegra;
Caso aprovada e selecionada, fica autorizada a publicação da produção na Revista, a qual não se responsabiliza pelas opiniões, ideias e conceitos emitidos nos textos, por serem de inteira responsabilidade de seu(s) autor(es);
A publicação do artigo implica transferência gratuita dos direitos autorais à Revista, nas versões eletrônica e impressa, conforme permissivo constante do artigo 49 da Lei de Proteção de Direitos Autorais (Lei 9.610, de 19/02/98), e que a não observância desse compromisso submeterá o infrator a sanções e penas previstas no mesmo diploma legal;
Todos os artigos publicados são licenciados sob a Licença Creative Commons Attribution, que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.